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Abstract—Wireless sensor/actuator networks (WSNs) are hard
to program, in particular so for business domain experts that
have a good understanding of how WSNs can best be used to
improve business operations. This contributes to hampering WSN
adoption by enterprises. As business process modeling languages
such as the Business Process Model and Notation (BPMN) are
well accessible to domain experts, they can be used as a tool
to facilitate WSN programming. In this paper, we explore the
properties of WSNs that set them apart from traditional IT
systems and use these properties to derive requirements for
BPMN extensions that are tailored to the specifics of WSNs. We
furthermore propose a set of BPMN extensions that fulfill these
requirements and demonstrate that they are better suited for
modeling WSN processes than standard BPMN.

I. INTRODUCTION

WSNs are dynamic, ad-hoc networks of tiny computers:
the sensor nodes. They have limited capabilities and typically
perform sensing and actuation tasks [1], [2]. For example, a
node in a WSN might measure temperature values in a room
while another node controls the air conditioning according to
the sensed values and desired overall room temperature. WSN
applications range from environmental monitoring, e.g., wild
fire spotting or monitoring volcanic activity, to applications
running in an enterprise context [2]–[5], such as monitoring
and optimizing energy consumption of buildings or enabling
predictive maintenance of assets.

Application logic for WSNs is notoriously difficult to pro-
gram, often requiring low level programming skills due to the
requirements of the restricted node hardware [6]. Although the
initial setup of a network is cumbersome and costly, modifying
the tasks performed by an already running network requires
additional effort. Additionally, it is often domain experts (such
as facility managers) that have a thorough understanding of
the processes in companies that could be improved by WSN
deployments. These experts have the knowledge how to make
the best possible use of sensing and actuating equipment, but
there is currently no easy possibility to make the networks
accessible to this type of user. All these reasons combined
slow and sometimes hinder the adoption of WSNs in a broader
context.

The makeSense project has ventured out to bridge the
gap between the technical expertise needed to program sensor
networks and the domain expertise required to design useful
processes. The goal is to facilitate the programming of WSNs
by employing graphical business process modeling approaches,
such as offered by BPMN, to design WSN applications. These

process modeling languages are in widespread use and easy to
grasp for domain experts.

The work described in this paper is embedded in a larger
framework for model-driven development of logic for WSNs.
Figure 1 shows the overall process. Before the described
modeling takes place, a technical person chooses the required
sensors and actuators and orders and installs them. They come
with basic software that allows them to form a mesh network
and exposes their remote sensing and actuation function. A
discovery mechanism scans the network and creates a system
model that is used to perform the actual modeling as described
in this paper. After this modeling step, the process model
is analyzed and those parts that obtain and aggregate sensor
values or drive actuators are used to generate and compile
executable code that is installed directly on the sensor nodes.
The execution of the generated code directly on sensor nodes
is more efficient than interpreting the process part in a process
execution engine. Due to their constrained resources, the nodes
would not allow offering a complete execution engine. At run-
time, the compiled part of the process running on the WSN
communicates with the rest of the process via messaging.

Although WSNs are IT systems, they still have properties
that make them stand out from systems typically addressed in
business process modeling. For example, task execution in a
WSN is usually distributed on subsets of nodes and the set
of operations a WSN is able to carry out is typically severely
restricted compared to multipurpose IT systems. In general, it
is possible to model WSN processes with standard BPMN [7],
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[8]. Due to the specific characteristics of WSNs, however, this
might require modeling details for execution, which is not the
case in our modeling approach that is tailored to the specifics
of WSNs.

In this paper, our goal is therefore to propose a set of
extensions for BPMN 2.0 [9] that are effective for modeling
WSN processes. These extensions have been devised based on
an analysis of the specific properties that distinguish WSNs
from other IT systems. These properties and the requirements
towards BPMN extensions motivated by them are presented
in Section II and Section III respectively. The proposed
modeling extensions will be described in Section IV. Section V
outlines the implementation. This will be followed in Section VI
by a survey of related work and a comparison of the proposed
extensions to other approaches. Section VII compares the
approach with modeling WSN processes using standard BPMN.
Finally, Section VIII concludes and provides an outlook on
future work.

II. BACKGROUND ON WSNS AND BPMN
In Subsection II-A we analyze properties of WSNs relevant

for application modeling. This will guide our requirements for
WSN-specific BPMN in Section III and our solution proposals
in Section IV. Subsection II-B provides a short overview on
BPMN and describes its current capabilities to capture WSNs.

A. WSN Properties

WSNs consist of nodes, which are connected via digital radio
links. The network itself is not fixed, but ad-hoc, as sensors
may join or disconnect. Thus, WSNs are ad-hoc networks
with specific properties [5]. In general, these properties make
it challenging to model WSNs and to create corresponding
applications. The properties of WSNs also motivate the need for
extending BPMN to better reflect these properties in the process
models. In the following paragraphs, we will introduce and
explain the properties that are ultimately relevant for creating
WSN specific BPMN models.
Dynamic Addition and Removal of Wireless Sensor Nodes
(P1) In WSNs, to increase sensing accuracy or to increase the
coverage area of the WSN, new nodes can be added even after
the application has been started. Moreover, nodes might turn
off as a result of exhausting their limited energy resources [2],
[5]. This is why, for WSNs, direct addressing, i.e., addressing
single nodes by unique identifiers (e.g., MAC address), is in
general not beneficial. An indirect addressing scheme can solve
this problem [10]. For indirect addressing, general common
properties of the nodes are used to address them instead of their
uniquely identifying properties, e.g., “sensors” or “temperature
sensors”. In the introduced model-driven tool chain, addresses
can be resolved during compilation (static resolution) time of
the models or during run-time of the application (dynamic
resolution).
Categories of WSN Operations (P2) Regarding WSN
operations, one can distinguish between local and command
actions. A local action is an operation that is actually executed
at a specific node on which it is invoked. A command action

involves sending a message to remote nodes, triggering them to
perform an operation. Command actions enable a more dynamic
environment by allowing execution of operations remotely
based on run-time decisions, e.g., after a local sense action,
based on the results, nodes might be commanded to actuate.
Both the command and local actions can be type of a sense, an
actuate or an intermediary operation [11]. The sense operation is
used to analyze surrounding environment, e.g., sensing pressure.
Usually, this operation creates some output data. The actuate
operation is used to manipulate surrounding environment, e.g.,
increase ventilation. The intermediary operation is used to
send/receive data from outer world and to make computation
in WSNs, e.g., decide whether the temperature is above the
threshold.

Both local and command actions may create output values,
which are consumed by other nodes [1]. Especially, sense
actions create data, which is consumed by other nodes later
on for some application specific purposes. Sensing presence
data (of people in a space) would be composed of two steps:
sensing presence and aggregating it to predict presence more
precisely. Successively sensing and using this created data can
be called as combined operations, i.e., execution of the one
operation depends on the other one.
Parallel Execution of the Same Process Logic in one
Application (P3) Some WSN applications can execute the
same process logic at different regions of the WSN in one
application [10]. A simple example is an air conditioning
system of multiple meeting rooms that is operated with a
WSN. In this example, there might be multiple meeting rooms
running different instances of the same process.
Distributed Nature of WSN Applications (P4) To reduce
the power consumption and to remove a central point of failure,
WSN applications are executed in a distributed fashion, i.e., by
not making computations on a single powerful node. The
execution logic is distributed on multiple powerful nodes.
Moreover, by having multiple nodes executing operations
instead of a single powerful node, the response time of WSNs to
events and power consumption of nodes decrease. This makes
WSNs more suitable for real-time applications and prolongs
the lifetime of the WSN application [1].
Limited Resources and Error-prone Behavior of WSN
Nodes (P5) WSN sensor nodes typically have limited
resources, among which battery plays a critical role. These
limited resources and their deployment environment make
nodes prone to failures [5]. There is a strong correlation
between power-consumption and amount of communication in
WSNs [5]. The degree of power consumption would affect the
non-functional properties of the respective WSN application
such as response time, total running time of the WSN, etc.
Event-driven Nature of WSNs (P6) Behavior of event-
driven operations is quite different from periodic operations
because they are halted until an event triggers them whereas
periodic operations are executed in certain time intervals and
return the result as soon as they are called [7], [10]. During
the execution, event-driven operations communicate less than



periodic operations because they go into an idle mode until the
specified event happens. Consequently, event-driven operations
consume less energy compared to periodic operations [7], [10],
because the communication is the most expensive operation in
WSNs [5]. An example of event-driven operations in a WSN
can be a set of nodes that check if a door is open or not. If the
observed door has been opened, they communicate to inform
the data sinks, i.e., the nodes or external systems interested in
the sensed data. In case of periodic action, the sensors would
not wait for event to happen but they would inform the sinks
periodically about the status of the door.

B. BPMN

Economic changes and technology advancements force
companies to keep their business processes updated and
competitive. Business process management (BPM) is a way to
drive a company by processes. BPM aims to document and
improve processes, and to support them by IT [12]. BPMN is
the de-facto standard for modeling processes and to bring them
to execution. Note that internally, a workflow engine can use
another language to execute BPMN [13]. BPMN is a process
modeling and execution language and a well-accepted industry
standard. It bridges both the gap in understanding between
business experts and developers as well as among business
experts, so that a common understanding of the process is
achieved [9].

Although standard BPMN can be used to model WSN
processes [7], [8], that approach results in a non optimal process
models and some details are sacrificed. The main reason is the
limited expressiveness of BPMN with regards to characteristics
specific to WSNs. An example of a WSN application modeled
with standard BPMN is shown in Fig. 2. The scenario is
ventilation of a meeting room. The process is started by a
message stating the room number, the reservation period and
the desired maximum CO2 value. The process then waits until
the meeting begins. It then continuously requests the current
CO2 values of the meeting room and adjusts the ventilation
accordingly. The sensing and the ventilation actuators are
represented as separate pools as they are different groups of
nodes.

III. REQUIREMENTS FOR WSN-SPECIFIC BPMN

The properties of WSNs are critical to be correctly modeled
and to be used as an execution environment. While reflecting
the relevant properties to the user during modeling, we also
need to conform to standard BPMN. In the following sections,
we state general requirements on BPMN modeling constructs
which are specific to WSNs. These requirements are derived
from the properties stated in Section II and have been harvested
during our work in the makeSense project.
Support for Indirect and Dynamic Addressing of Nodes
(R1) For the purpose of supporting a dynamically changing
set of nodes (P1), we need a means to address nodes indirectly.
In case of direct addressing, a re-initialization might be required
to add a new node to the system. Moreover, indirect addressing
provides a method of grouping nodes, e.g., sensors, actuators,
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Fig. 2: A ventilation business process with standard BPMN

temperature sensors, etc. By this way, one can give common
attributes to nodes and later on use them to address these
nodes. Indirect addressing would provide programmers a type
of reference autonomy, i.e., it would avoid coupling between
model and individual nodes. Different resolution schemes (static
vs. dynamic resolution) in the model-driven tool chain demand
their necessary differentiation during modeling (P1).

Support and Restrict User to WSN Operation Categories
(R2) Sense, actuate, and intermediary operations (P2) behave
differently during execution. They represent the type of the
WSN action (actionType). Local or command actions define
if the operation is locally executed or remotely executed (is-
CommandAction). This difference in execution logic demands
necessary differentiation between local and command actions
at the modeling level. The executed operation (targetOperation)
on some nodes (actionPerformer) might create some output
data and this data might be returned to another group of
nodes (outputTarget). Returned data might be an input data
for another operation (returnOperation). The nodes have to
be specified following the result of R1 and thus allow for
a resolution to multiple target nodes. In summary, we need
a 6-tuple to define a WSN operation comprehensively, i.e.,
actionType, isCommandAction, actionPerformer, outputTarget,
targetOperation, returnOperation.

Support for Multiple Instances of the Same Process (R3)
From an execution point of view, there is a significant difference
between execution of a WSN business process and a conven-
tional business process: WSN processes are usually executed
inside of a WSN itself, whereas standard BPMN processes are
executed inside of a business process engine. Moreover, similar
to standard business processes, in a WSN multiple instances



of the same process can exist concurrently (P3). Therefore,
explicit separation of WSN processes from standard business
processes and support for the visual representation of parallel
processes are needed.

Distribution of Execution Logic into WSN (R4)
The produced data and events in WSNs can be used to make

decisions in a business process. This decision mechanism is
executed seamlessly in business process execution engines in
case of conventional business processes unlike the processes
executed in a WSN. As the modeled processes might be
completely executed in a WSN, we might need a means to
explicitly define information about which nodes are expected
to orchestrate the executing WSN process. These orchestrating
nodes would be responsible for holding information about the
current state of the process instance, coordination operations
executed in the process instance, etc. The execution of a
business process might be orchestrated by multiple nodes in
parallel (P4).

Prioritization of Performance Goals (R5) In WSNs, there
may be application specific conflicting performance goals, e.g.,
shorter response time, reliable communication, lower power
consumption (P5). To achieve more reactive behavior, preserve
resources and in general adapt application specific needs, there
is a need to define these non-functional properties during
BPMN modeling. For instance, in case of a fire detection
scenario, reliable message transmission will be needed and
response time needs to be short.

Support for Event-driven Actions in Modeling (R6) WSNs
provide both event-driven and periodic operations, the behavior
of event-driven WSN actions (P6) is different from behavior of
periodic actions. Representation of different behaviors with the
same visual construct would decrease the understandability of
the BPMN process models [14]. For the purpose of avoiding
this reduction in understandability, we need a means to provide
necessary distinguishability between an event-driven task and
a periodic task.

Models should be stable on minor WSN changes (R7) The
changes in the deployment of a specific network on which the
process runs such as its topology, changing the orchestrating
nodes, changing the implementation details of a WSN task,
etc. should not affect the model itself.

IV. SOLUTION PROPOSALS

To satisfy the requirements presented in Section III, we
propose extensions to standard BPMN. These extensions are
WSN Task, WSN Pool, and Performance Annotations. We call
the set of all extensions “BPMN4WSN”. Our proposals are
built on the work by Tranquillini et al. [11]. Although this
work is effective, it relies on a separate non-BPMN diagram
type: Each WSN task refers to an instance of that diagram
type. In this work, we make the approach more compatible to
standard BPMN and manage to include all extended information
extension elements at the designated places in the BPMN
schema and reuse data types of the BPMN standard. In addition,
we integrate all visual elements in a standard BPMN diagram.

We define a WSN Task as an extension of a standard BPMN
Service Task, a WSN Pool is an annotated standard BPMN
pool and a Performance Annotation is an extension of BPMN
groups. In the following sections, we define these extensions
in detail.

A. WSN Task

? !
A WSN Task corresponds to a task executed in
a WSN process. The visual representation of a
WSN Task is the same with a standard BPMN
task except its additional icons.

A class diagram of a WSN Task is presented in Fig. 3.
The instances based on tWSNPerformer are used to address
nodes dynamically and indirectly which satisfies the require-
ment R1. The orchestrationPerformer is used to change the
orchestrating nodes of a WSN and it satisfies the require-
ment R4. The actionType and isCommandAction elements
are used to define type and location of the WSN Task
respectively. The targetOperation and returnOperation are
type of tWSNOperation and tWSNOperation is used to bind
WSN operations with WSN Tasks. The targetOperation is
the initial operation which is executed by nodes defined by
actionPerformer elements. The outputTarget element stands for
the set of nodes to which output data of the targetOperation
is sent and nodes defined by outputTarget would execute the
operation referenced by returnOperation. By introducing this
6-tuple, i.e., {actionType, isCommandAction, actionPerformer,
outputTarget, targetOperation, returnOperation}, we meet re-
quirement R2. The isEventDriven extension is used to mark
a WSN Task as either periodic or event-driven and use of it
satisfies the requirement R6. Extension element parameters,
which is an instance of tParameters, fulfills the requirement
R5 partially and with Performance Annotations (see Subsec-
tion IV-C), we fulfill corresponding requirement completely. In
the following subsections, we explain the extension elements
of a WSN Task in detail.
tWSNOperation In standard BPMN, the standard operation
construct is of type tOperation; however, this construct does
not suffice in case of WSN operations because a WSN
operation might take additional parameters and the required
inMessageRef element of tOperation is not applicable for WSN
operations. The tWSNOperation type is used to bind a WSN
operation to a WSN Task. To define the namespace for available
operations, implementationRef of type tWSNOperation is used.
Type of the implementationRef is a qualified name. In defined
namespace, the operationName can be used to select a unique
operation. The operations can take parameters which are defined
by parameters extension element of the type tWSNOperation.
The first operation whose input parameters are the same as the
provided parameters extension element will be selected. The
targetOperation and returnOperation elements are instances of
tWSNOperation. The targetOperation is the initial operation
executed and returnOperation is the operation based on the
output data of the targetOperation. Parameters element of
type tWSNOperation contains a list of parameters used to
pass compile time configuration variables to corresponding
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Fig. 3: WSN Task class diagram

operations. A parameter is composed of name and value pair.
An example would be the interval at which sensing should
occur: “period = 30” for sensing every 30 seconds.

actionType The actionType element is used to define a WSN
operation as a sense (?), an actuate (!) or an intermediary
operation (�) where sense is the default value. The icon of
the selected type is filled with black (? !, ? !, ? !).

isCommandAction The extension element isCommandAction
is of type Boolean and its default value is false. Setting this
element true would define this task as a command action.
LocalAction is the default selection for a WSN Task. Whenever
a WSN Task set as a command task an additional arrow icon
is visible which represents a command message sent to the
nodes which are responsible for the execution ( ).

tWSNPerformer In standard BPMN, tPerformer is the
class defining the resource that will perform the activity. The
tWSNPerformer extends tPerformer and used to associate WSN
nodes with a WSN Task. Therefore, we add a dynamicTarget
element and a staticTarget element to distinguish between
dynamic and static resolution schemes. The dynamicTarget
refers to an expression suited to find performer nodes during
run-time of the WSN process. A staticTarget refers to an
expression, which is evaluated and then used to address
the WSN nodes the corresponding code should be deployed.
Technically, both dynamicTarget and staticTarget are of type
tResourceAssignmentExpression, which is the BPMN standard
type for resource assignments. The outputTarget and orches-
trationPerformer extension elements are instances of the type
tWSNPerformer.

outputTarget represents the set of nodes to which the output
data should be sent. If the returnOperation has been defined, the
targeted nodes are expected to execute the referenced operation.
The outputTarget is an optional element and in case it is defined,
an additional return arrow is added to the WSN task visual
element ( ).

orchestrationPerformer is an optional element used to change

the orchestrating nodes of a WSN process instance. If a
WSN task is defined with an orchestrationPerformer, the
execution of the WSN task and the execution constructs on
the outgoing sequence flows are orchestrated by the defined
orchestration performers until a new definition occurs. Multiple
orchestrationPerformers might exist as parallel execution flows
are possible. In case of merging execution flows, the set of
orchestrating nodes is the union of both execution flows. The
coordination techniques of these orchestrating nodes are out of
scope of this paper and a further reading can be found in [1].
tActionPerformer The tActionPerformer extends tWSN-
Performer. It has an additional index element to give an
order if multiple actionPerformer have been defined. The
actionPerformer is an instance of tActionPerformer type.

actionPerformer represents the nodes that are supposed to
execute the targetOperation. There can be more than one
actionPerformer defined in a WSN Task. In case of local action,
only the actionPerformer with the lowest index will be used. In
case of a command action, all defined actionPerformers will be
used. The index attribute of the each actionPerformer will be
used to determine the order of execution. Orchestrating nodes
initiate the first command message to the actionPerformer
with the lowest index and it will be propagated to the last
actionPerformer which is responsible for the execution of the
targetOperation.
isEventDriven This is an element of Boolean value and used
to mark a WSN Task event-driven. The default value is false,
which means the task is a periodic task. To represent behavioral
difference between these tasks at a visual level, we use a clock
icon for event-driven tasks ( ).

B. WSN Pool

WSN Pools are used to define processes which are executed
in WSNs. The WSN Pool extends the standard BPMN pool.
To provide a visual differentiation between a standard BPMN
pool and a WSN pool, we provide a WSN icon on the top left
corner of the pools. By use of these WSN pools we provide a



clear separation between WSN processes and standard business
processes; therefore, we satisfy requirement R3.

C. Performance Annotations

BPMN allows to associate activities with common properties
to a group. We inherit from this grouping construct and
add a performanceGoalRef, which references to a concrete
performance goal. Performance goals define the performance
priority of an application. Performance annotations group
BPMN constructs and these constructs will be later transformed
into executable code for execution. The performance annota-
tions modify the execution characteristics of the contained
BPMN constructs during their execution. In case of a fire
detection scenario, the tasks executed after a fire has been
detected would sacrifice energy resources and try to deliver
messages reliably. Actual performance goal definitions are just
referenced and definitions are implementation specific. WSN
Task parameters are used to define task specific properties;
whereas, performance annotations define performance goals of
the whole WSN. By using performance annotations, we fulfill
requirement R5 completely.

D. Extensions Applied

The mappings between solution proposals and requirements
are shown in Table I. Fig. 2 presented a ventilation process.
This process has been remodeled using the presented extensions
and is presented in Fig. 4. In Fig. 4, the CO2 calculation is
accomplished through the WSN Task “Calculate CO2 Average”
whereas in Fig. 2 this calculation is distributed among multiple
tasks: “Request CO2 2 Value” and “Evaluate CO2 Values” in
the WSN Gateway pool and tasks in the “CO2 Sensors” pool. In
order to create an equivalent “Calculate CO2 Average” WSN
Task, one needs to define WSN extensions properly. That
means, a command sense WSN task with targetOperation,
returnOperation, outputTarget and actionPerformer should
be defined. The defined returnOperation is an aggregation
equivalent to the “Evaluate CO2 Values” task in Fig. 2. By
using outputTarget and actionPerformer, the need of extra pool
disappeared. Similarly, there is no need of an additional “Adjust
Ventilation” as in Fig. 2 due to use of WSN extension elements.

V. IMPLEMENTATION

In a proof-of-concept implementation, we realized a Java
prototype that translates the WSN pool into executable code
for the sensor network. Despite we do not demonstrate it in
this paper, the WSN pool can connect to other pools and
therefore easily integrate with other process participants (such
as BPMN processes executing in standard engines or other
systems). The compiler that translates the process model into
executable code also generates the necessary communication
endpoints and instance handling and correlation logic, allowing
for both stand-alone and integrated operation of the WSN. An
upcoming report on project makeSense will elaborate on the
complete project scope.

WSN

wait until 
current time
>= start time

Calculate
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>= end time

average CO2 > 
CO2 threshold

Increase 
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Decrease 
Ventilation

otherwise

room number
start time
end time
CO2 threshold

Fig. 4: The ventilation process with BPMN4WSN

VI. RELATED WORK

Tailoring existing modeling languages towards specific needs
is a common approach. For instance, there are at least 62 BPEL
extensions including modeling and run-time extensions [15].
None of them tackles Wireless Sensor Networks. Zor et al. [16]
propose a BPMN extension for the manufacturing domain to
explicitly handle products and resources. The inclusion of
security aspects, such as access control or intrusion detection,
into BPMN is described by Rodriguez et al. [17] and by
Bruckner et al. [18]. Management of application topologies
is enabled by BPMN4TOSCA [19]. However, these BPMN
extensions also do not address the specific requirements
of WSNs. Discussions on business process transformations
usually regard the business-IT-gap and the transformation
of higher level processes into lower level, more technical,
business processes. For instance, Stein et al. [20] survey
on transformations to BPEL. WSNs, however, have not yet
been in the focus of research or practice. Creation of WSN
applications are challenging because during development, low-
level programming is done. Application should be scalable and
resources are constrained. To overcome these programming
difficulties, different model-driven code generation techniques
with different modeling languages were proposed [6], [8], [11],
[21]. Only the work by Caracas and Kramp [8] and Tranquillini
et al. [11] use BPMN to model and generate code from these
models. The former one uses standard BPMN to create WSN
models and the latter one proposes an extension to standard
BPMN. This research is conducted under the makeSense
project as the work of [11] and solution proposals are built on
top of the previous work of [11].



TABLE I: Solution/Requirement Mapping

Solution Name Requirement

WSNTask/tWSNPerformer, tActionPerformer Support for Indirect and Dynamic Addressing of Nodes (R1)

WSNTask/actionType, targetOperation, returnOperation,
isCommandAction, actionPerfomer, outputTarget

Support and Restrict User to WSN Operation Categories (R2)

WSN Pool Support for Multiple Instances of the Same Process (R3)

WSNTask/orchestrationPerformer Distribution of Execution Logic into WSN (R4)

WSNTask/tWSNOperation/parameters Performance Annotations Prioritization of Performance Goals (R5)

WSNTask/isEventDriven Support for Event-driven Actions in Modeling (R6)

All Models should be stable on minor WSN changes (R7)

VII. DISCUSSION

In this section, we compare benefits of using our extensions
and drawbacks of standard BPMN.

Support for Indirect and Dynamic Addressing of Nodes
(R1) With standard BPMN, we can address single WSN nodes,
group of WSN nodes, or all nodes in WSN. This can be done
by using standard BPMN pools where the names of the pools
represent corresponding nodes. If more than one node is present,
one should use a multiple instance pool. The data contained
in the message construct of BPMN may be used to select
the target group of nodes. However, this does not provide an
explicit dynamic way of selecting WSN nodes which would be
responsible for the execution of the corresponding tasks. Pool
names can be used to address nodes statically as these names
can be considered as attributes. However, this approach would
have its draw-backs in case multiple attributes define a group
of nodes. With BPMN4WSN, users can define expressions
which can address nodes directly, indirectly, statically and
dynamically using WSN specific performer elements.

Support and Restrict User to WSN Operation Categories
(R2) Standard BPMN does not provide constructs for sense,
actuate, and intermediary operations because it is tailored to
the execution on general multi-purpose IT systems. Moreover,
there is no means of distinguishing local and command actions.
Although the initial operation and operations on the output
data are combined, standard BPMN would represent it as two
distinct tasks and this way of representing would break the
combined nature of these operations. Moreover, the created
output data would be available for other activities during the
life of parent process with respect to the BPMN standard, which
would require communication overhead, a waste of resources in
such a resource constrained environment. On the other hand, by
using the extension we proposed, one can save resources and
moreover can increase the understandability of BPMN models
because the different actions have different visual mappings
which increase the clarity of models.

Support for Multiple Instances of the Same Process (R3)
Pools are used to encapsulate processes in case of the existence
of multiple participants in standard BPMN. However to model
the processes executed on WSNs, pools are used to address
nodes with common properties. The tasks defined in these

pools are executed on the nodes addressed by the surrounding
pool. The actual process executed on a WSN would be a
combination of the pools which address WSN entities. This
way of modeling would introduce another level of abstraction
and would cause a semantic change. This semantic change
can cause confusions and diminish common understanding of
BPMN models. However, in a soon to be published user study,
we could prove that with minimal training domain experts
were enabled to understand the new execution semantic of
WSN actions. In case of the remaining extensions, we preserve
standard BPMN semantics with the WSN Pool and satisfy this
requirement.

Distribution of Execution Logic into WSN (R4) In case
of standard BPMN, modelers and developers do not have
the ability of distributing the execution logic into the WSN,
which would limit the executability of WSN models. In the
BPMN4WSN, this is done by the orchestrationPerformer
element of WSN Tasks.

Prioritization of Performance Goals (R5) Standard BPMN
does not provide a construct to prioritize performance goals.
Caracas et al. [8] proposed using the categories element of the
BPMN message construct to define communication protocols
between WSN processes. Different protocols might run with
different performance goals, each performance goal will only
affect the behavior of the communicating parties, not the
behavior of the whole WSN application. In our approach,
we give some static parameters to each task, to configure its
behavior during compile time. Moreover, we can add some
performance goals for the whole WSN during execution of the
preselected execution blocks.

Support for Event-driven Actions in Modeling (R6) Stan-
dard BPMN does not provide a differentiation between event-
driven and periodic tasks. Modeling WSNs with standard
BPMN would create models that are less clear and less
understandable than models with explicit event-driven task
markings. The solution proposed by Caracas et al. [8] dis-
tinguishes between synchronous and asynchronous tasks by
adding a textual annotation at the successful outgoing sequence
flows taken at the successful completion of the task. This
can improve visual separation, however, business experts and
developers may want to annotate other outgoing sequence flows



for documentation purposes, which might lead to confusion.
Additionally, these annotations would belong to the outgoing
sequence flow elements, not to the task itself. The WSN
tasks provide explicit event-driven markings, of which business
experts and developers would have a common understanding.

Models should be stable on minor WSN changes (R7) In
case of standard BPMN, dynamic topology changes would
affect the models and might require addition or removal of
new or existing pools. In contrast, for the models created using
BPMN4WSN extensions, there is no need to remodel for minor
changes in a WSN set-up. That means, if the WSN topology
changes due to dynamic addition and removal of WSN nodes,
the models would not need to be visually changed.

VIII. CONCLUSIONS AND OUTLOOK

This publication introduced an extension for BPMN in order
to make it more suitable for creating application logic for
scenarios that involve sensing and aggregating values in a
physical environment and control of actuators with the help of
WSNs. After describing the relevant properties of WSNs from
a modeling perspective as a complex, distributed execution
environment, a set of requirements was derived for WSN-
specific BPMN. Hence, we introduced BPMN extensions,
including a WSN task, WSN pool and performance annotations,
that fulfill these requirements. In a critical discussion, we
compared our approach to modeling WSN logic with standard
BPMN and were able to demonstrate the advantages of our
approach. Being embedded in an end-to-end tool chain, the
extended process models described in this paper can be used
to generate executable code for the sensor nodes, replacing the
need for an execution engine.

Future work includes evaluating the increase in programming
efficiency of our approach for the software developer with a
user study with users from different backgrounds, such as
experienced BPMN modelers, WSN experts, and technical
domain experts for the scenarios where WSNs are deployed.
Furthermore, the current tool chain can only generate code for
sensors based on the Contiki operating system. Other platforms
may be added in the future. Finally, the approach will be tested
on more scenarios where WSNs are deployed, especially in
the areas of logistics and predictive maintenance.
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